Questions:

  1. Is screening considered visit 1, or is it to include the subject into the study? SDTM team agreed to change to VISIT 1 instead of SCREENING.
  2. Are these Real World Evidence (RWE) studies only or clinical trials?
  3. Should both endpoints be shown in one efficacy dataset or two? I will be showing 3 datasets.
  4. What is a good surface area to use for the child subject?
  5. Should i use Male and 6 years? please advise.

This example illustrates example analysis datasets for the following endpoints:

Source Data

The SDTM examples used as the source data are from Section 2.1, Basic CMR tests - Systolic Function. The example datasets show visits 1 and 6 for one subject. The subject was enrolled in the study on 20-May-2021 and the study visits were every two months. Visit 1 represents the visit at day 1 of the study, and visit 6 represents the visit at month 12 of the study. The associated laboratory test, N-Terminal ProB-type Natriuretic Peptide, is used in conjunction with ejection fraction as a biomarker and is important for diagnosis and treatment. It is also used separately to identify the percent change over a period of time.

Analysis Datasets

The example analysis dataset includes treatment and demographic information drawn from the ADSL, defined in the Metadata Table below. In this example, only some of the required variables, plus important stratification variables from ADSL, are shown. One variable mentioned body surface area (BSA), can be computed and added to ADSL. However, since the subjects are children, the body surface area changes over time. Therefore, it would probably be better to have a separate dataset to represent this over time.

The table below shows the example analysis datasets and unique parameters for this example. The Subject Level Analysis Dataset (ADSL)  is a necessary component in the creation process of subsequent analysis datasets for human trials. The ADSL incorporates demographics, treatment groups, study dates, and stratification variables. In this example, the ADSL is not illustrated, but serves as a source for standard ADaM variables. Additional information can be found in Section 2.3.1 of the ADaM Implementation Guide (ADaMIG) v1.3.

The ADCVEF dataset includes tests pertinent to this analysis, those for which CVTESTCD is equal to "LVEF_C" or "RVEF_C". The relationship dataset RELREC illustrates the relationship between datasets. 

The ADCVNTRP dataset is a subset of the Laboratory Results (LB) SDTM dataset, for which LBTESTCD is equal to "BNPPRONT". In this case, many lab draws may occur throughout the year, but only those linked to a specific visit are included. By subsetting the LB dataset with LBLNKID not missing, laboratory data that aligns with CV data can be filtered out and sorted using USUBJID and VISIT. If LBLNKID is not available, a windowing strategy could be used to select the laboratory draw closest to that visit for merging with CV, computed in AVISIT.

ADCMRI is an efficacy analysis dataset with only a few records for more complex modeling of changes in ejection fraction, plus the ProB-type test results. It is an ADaM Basic Data Structure (BDS) dataset, with additional variables added from ADCVEF.

Dataset Name

Dataset Description

Class of Dataset

Structure

Location

Keys

Documentation

ADSL

Subject-Level Analysis Dataset

SUBJECT LEVEL ANALYSIS DATASETadsl.xptOne record per subjectUSUBJIDADaMIG v1.3 section 3.1.1
ADCVNTPCardiac Ejection Fraction and NTproBNP Analysis Dataset

BASIC DATA STRUCTURE

One record per subject per analysis visit per parameter.adcvntrp.xptUSUBJID, AVISITN, PARAMN

Analysis Dataset

DatasetVariableWhereTypeOriginDerivation/Comment
ADCVNTPAVALPARAMCD = "LVEFC"NumPredecessorSet to CV.CVSTRESN where CV.CVTESTCD = "LVEF_C"
ADCVNTPAVALPARAMCD = "RVEFC"NumPredecessorSet to CV.CVSTRESN where CV.CVTESTCD = "RVEF_C"
ADCVNTPAVALPARAMCD = "BNPPRONT"NumPredecessorSet to LB.LBSTRESN where LB.LBTESTCD = "BNPPRONT"

Analysis Datasets

The subsequent section provides the data structures for the example ADaM datasets. In this example, columns for derived variables BASE, CHG, PCHG and CHGCAT1 have been added to facilitate analyses of the efficacy endpoints. Specifically, example demographic data for ADSL were created for an 8 year old male. Also, a custom variable for BSA at baseline (BSABASE), was added from ADSL.

Variable NameVariable LabelTypeCodelist/Controlled Terms/FormatSourceDerivation/Comment
STUDYIDStudy IdentifierChar

CV.STUDYID


USUBJIDUnique Subject IdentifierChar

CV.USUBJID

Select for records with RE data.
ASEQAnalysis Sequence NumberNum

CV.CVSEQ

Number records 1 to n after sorting by keys.
BSABASEBody Surface Area (m2) at BaselineNum
ADSL.BSABASECompute in ADSL where VS.VSTESTCD = "BSA".
PARAMParameterChar

Left Ventricular Ejection Fraction, Calculated (%);

Right Ventricular Ejection Fraction, Calculated (%);

N-Terminal ProB-type Natriuretic Peptide (pg/mL)


For tests from CV, set to the values of CV.CVTEST plus CV.CVTESTU with spaces and parentheses as shown. 

For tests from LB, set to the value of LB.LBTEST plus LB.LBTESTU with spaces and parentheses as shown. 

PARAMCDParameter CodeChar

LVEFC;

RVEFC;

BNPPRONT;




If CV.CVTESTCD = "LVEF_C" then PARAMCD = "LVEFC"

If CV.CVTESTCD = "RVEF_C" then PARAMCD = "RVEFC".

If LB.LBTESTDC = "BNPPRONT" then PARAMCD = "BNPPRONT.

Note: for this example dataset, select the records where the test values shown above are included.

PARAMNParameter NumberNum



Number PARAMCD as follows:

LVEFC = "1"

RVEFC = "2"

BNPPRONT = "3"

AVALAnalysis ValueNum


See Parameter Value List 

AVISITAnalysis VisitChar



If CV.VISIT = "VISIT 1" then AVISIT = "Visit 1 (Baseline)".

Else if CV.VISIT = "VISIT 6" then AVISIT = "Visit 6 (1 Year)".

AVISITNAnalysis Visit (N)Num

Set to value of CV.VISITNUM or LB.VISITNUM
VISITVisitNum

CV.VISIT

LB.VISIT


ADTAnalysis DateNumdate9.
Date portion of CV.CVDTC or LB.LBDTC converted to numeric and displayed in a format such as date9. 
ABLFLBaseline Record FlagCharY

If CV.VISIT = 1 then ABLFL = "Y".

BASEBaseline ValueNum

Set BASE to AVAL from the record for that subject and parameter where ABLFL = "Y".

Populate BASE for additional visits by copying the value of BASE in the baseline record by USUBJID and ADT. (Or by AVISIT if ADT varies for labs, where windowing is applied to select record closest to the visit)

CHGChange from BaselineNum

Compute CHG = AVAL - BASE for that record. Only compute for post-baseline records.
PCHGPercent Change from BaselineNum

Compute PCHG = (CHG / BASE) * 100. Only compute for post-baseline records.
CHGCAT1Change from Baseline Category 1Char

Decline >=10.0;

Decline < 10.0; 

Increase


Categorize the value of CHG for Left Ventricular Ejection Fraction, and Calculated (%) (LVEFC) and for Right Ventricular Ejection Fraction, Calculated (%) (RVEFC)
CHGCAT2Change from Baseline Category 2Chart



Categorize the value of CHG for N-Terminal ProB-type Natriuretic Peptide (pg/mL) (BNPPRONT)
TRT01P

Planned Treatment for Period 01

CharTreatment AADSL.TRT01PFor this example we are using "Treatment A". In a Real World Evidence study this could be non-treatment related, e.g. "Group A".

ITTFL

Intent-to-Treat Population Flag

Char

Y; N

ADSL.ITTFL


AGEAgeNum
ADSL.AGE
AGEUAge UnitsChar(AGEU)ADSL.AGEU
SEXSexChar(SEX)ADSL.SEX
SRCDOMSource DataChar

CV; LB


Set to the SDTM domain name that relates to the analysis value.
SRCSEQSource Sequence NumberNum


CV.CVSEQ

LB.LBSEQ

Set to the SDTM domain sequence number that relates to the analysis value.


Example 1 

This example dataset shows the findings and additional analysis variables associated with:


Rows 1-2:Show the baseline CMR ejection fraction measurements for participant 101 at VISIT 1.
Row 3:Shows the baseline NTProbTest for participant 101 at VISIT 1.
Rows 4-5:Show the CMR ejection fraction measurements for participant 101 at VISIT 6.
Row 6:Shows the NTProbTest for participant 101 at VISIT 6.
RowSTUDYIDUSUBJIDASEQBSABASEPARAMPARAMCDPARAMNAVALAVISITAVISITNVISITADTABLFLBASECHGPCHGCHGCAT1TRT01PITTFLAGEAGEUSEXSRCDOMSRCSEQ
1DMD-EFLGEDMD-EFLGE-10110.65Left Ventricular Ejection Fraction, Calculated (%)LVEFC167Visit 1 (Month 1)1VISIT 116May2022Y67


Treatment AY8YEARSMCV3
2DMD-EFLGEDMD-EFLGE-10120.65Right Ventricular Ejection Fraction, Calculated (%)RVEFC274Visit 1 (Month 1)1VISIT 116May2022Y74


Treatment AY8YEARSMCV7
3DMD-EFLGEDMD-EFLGE-10130.65N-Terminal ProB-type Natriuretic Peptide (IU/L)BNPPRONT340Visit 1 (Baseline)1VISIT 116May2022Y40


Treatment AY8YEARSMLB1
4DMD-EFLGEDMD-EFLGE-10140.65Left Ventricular Ejection Fraction, Calculated (%)LVEFC160Visit 6 (Month 12)6VISIT 601Jun2023
67-7-10.447761Decline >=10.0Treatment AY8YEARSMCV11
5DMD-EFLGEDMD-EFLGE-10150.65Right Ventricular Ejection Fraction, Calculated (%)RVEFC261Visit 6 (Month 12)6VISIT 601Jun2023
74-13-17.567568Decline >=10.0Treatment AY8YEARSMCV15
6DMD-EFLGEDMD-EFLGE-10160.65N-Terminal ProB-type Natriuretic Peptide (IU/L)BNPPRONT3900Visit 6 (1 Year)6VISIT 11Jun2023
408602,150
Treatment AY8YEARSMLB2

Example 2 

The dataset above can also be set up to provide multivariate analyses by taking the lab tests of interest, transposing and merging with the ADCVNTPP dataset. In that case, the records from LB are not needed as a row.

The variables transposed and merged to the rows created from CV are:

DatasetValueWhere Variable Variable Label
ADCVNTPAVALPARAMCD = "BNPPRONT"BNPPRONTN-Terminal ProB-type Natriuretic Peptide (IU/L)
ADCVNTPCHGPARAMCD = "BNPPRONT"BNPCHGN-Term ProB-type N Pep Change Category
RowSTUDYIDUSUBJIDASEQBSABASEBNPPRONTBNPCHGPARAMPARAMCDPARAMNAVALAVISITAVISITNVISITADTABLFLBASECHGPCHGTRT01PITTFLAGEAGEUSEXSRCDOMSRCSEQ
1DMD-EFLGEDMD-EFLGE-10110.6540
Left Ventricular Ejection Fraction, Calculated (%)LVEFC167Visit 1 (Month 1)1VISIT 116MAY2022Y67

Treatment AY8YEARSMCV3
2DMD-EFLGEDMD-EFLGE-10120.6540
Right Ventricular Ejection Fraction, Calculated (%)RVEFC274Visit 1 (Month 1)1VISIT 116MAY2022Y74

Treatment AY8YEARSMCV7
3DMD-EFLGEDMD-EFLGE-10130.659002150Left Ventricular Ejection Fraction, Calculated (%)LVEFC160Visit 6 (Month 12)6VISIT 601JUN2023
67-7-10.447761Treatment AY8YEARSMCV11
4DMD-EFLGEDMD-EFLGE-10140.659002150Right Ventricular Ejection Fraction, Calculated (%)RVEFC261Visit 6 (Month 12)6VISIT 601JUN2023
74-13-17.567568Treatment AY8YEARSMCV15

Example Analysis Results Metadata (ARM) Tables

This table may be included in the submission package for regulatory agencies. It describes the analyses conducted for the study (usually limited to primary and secondary  endpoints) with details on data and analysis procedures used. The first example uses the dataset ADCVNTPR, selecting for the parameter "N-Terminal ProB-type Natriuretic Peptide (IU/L)".

Display

Table 14.xx.xx Percent change in NTproBNP over a period of time (yearly)

Analysis ResultComparison of Percent Change of NTproBNP for the Treatment Groups Over Time (quarterly or yearly)
Analysis Variables(s)PCHG
Analysis ReasonPrimary efficacy endpoint as prespecified in the SAP
Analysis PurposePrimary outcome measure

Data References

(incl. selection criteria)

PARAMCD = "BNPPRONT"

Where ITTFL = "Y"

Documentation

 The mixed model using lsmeans to compare treatment groups

Programming Statements 

(Add programming language statements here: SAS, R, etc.)

PROC MIXED DATA=ADCVNTPR;

WHERE PARAMCD = "BNPPRONT";

CLASS STUYDID TRT01P AVISITN;

MODEL PCHG=AVISITN*TRT01P/Solution;

RANDOM INTERCEPT / SUBJECT=STUYDID TYPE=UN;

LSMEANS TRT01P*AVISITN/ CL PDIFF;

RUN;

Display

Table 14.xx.xx Percent Change in Left Ventricular Ejection Fraction Over Time

Analysis ResultComparison of Percent Change of Ejection Fraction for the Treatment Groups Over Time (quarterly or yearly)
Analysis Variables(s)PCHG
Analysis ReasonPrimary efficacy endpoint as prespecified in the SAP
Analysis PurposePrimary outcome measure

Data References

(incl. selection criteria)

PARAMCD = "LVEFC"

Where ITTFL = "Y"

Documentation

 The mixed model using lsmeans to compare treatment groups

Programming Statements 

(Add programming language statements here: SAS, R, etc.)

PROC MIXED DATA=ADCVNTP;

CLASS STUYDID TRT01P AVISITN;

MODEL PCHG=AVISITN*TRT01P/Solution;

RANDOM INTERCEPT / SUBJECT=STUYDID TYPE=UN;

LSMEANS TRT01P*AVISITN/ CL PDIFF;

RUN;

Ejection Fraction

  • change in ejection fraction, would expect a decline in EF 2-3% per year, would prefer an improvement or no change. Concerning if rapid progression, 10% decline or more, for example.

NTproBNP

  • % change over a period of time – a decrease would mean improvement, annually is appropriate

SDTM Examples: Basic CMR tests - Systolic Function