Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

In this section, conformance refers to whether implementation of standards per this guide meets the requirements of the standards. Conformant collection and representation of tobacco product study data is ensured by full adherence to standards per this guide. Conformance to standards may be minimally is assessed by confirming implementation of standards per this guide and by evaluating tabulation and analysis data in relation to conformance rules.For

The following table illustrates minimum conformance to standards for data collection using CRFs, conformance to standards is minimally assessed by confirming adherence to the following: .

TIG Core designations, specified in data collection metadata tables, are followed
Metadataspec
Num
Guidance
Conformance
Description1
Implementation
1Following best practices for CRF design

The design of the CRF follows both recommendations for creating data collection instruments and recommendations for CRF design.

2Following data collection variable naming conventions

Data collection variable naming conventions are applied in the operational database as specified.

3Following standard wording for question text or prompts

The wording of CRF questions is standardized per specified question text or prompt for the data collection fields.

4Following core designations.

All HR (Highly Recommended) and applicable R/C (Recommended/Conditional) data collection fields are present in the CRF and/or operational database.

2
5Following guidance for CDISC Controlled Terminology

Controlled terminology is used as specified

in this guide,Specified controlled terminology must be used

to collect the data

in

using the CRF. 

3Best practices for CRF design are followed. The design of the CRF follows recommendations in Section x.x, Creating Data Collection Instruments and Section x.x,CRF Design.4The wording of CRF questions is standardized. 
  • Specified Question Text or Prompts are used to ask the question per associated guidance.
5Naming conventions for data collection variables are used in the operational database. 
  • Variable naming conventions are used in the operational database as specified in this guide.
6
6

Presenting validated QRS questions and reply choices as validated in the CRF. In some cases, this may result in CRFs that do not conform to CDASH best practices. The use of such questionnaires in their native format does not affect conformance.

All QRS questions and reply choices are presented as validated in the CRF. 

7

Aligning data collection variables values and target tabulation variables values when collection and tabulation variable names are the same. Minimal processing, such as changing case when mapping a data collection variable value into a tabulation variable, does not affect conformance.

Data output by the operational database into a tabulation dataset variable

should

requires

no additional

minimal processing

if

when the

CDASH

data collection and

SDTM

tabulation variable names are the same. 

  1. An SDTM data programmer should be able to assume that data in an SDTMIG variable is SDTMIG-compliant. Minimal processing (e.g., changing case) does not affect conformance. This helps to ensure a quality deliverable, even if the programmer is unfamiliar with data capture practices.
7Validated questionnaires, ratings, or scales present the questions and reply choices as validated. 
  1. his must be followed to maintain the validity of a validated instrument. (See Section 8.3.12, QRS - Questionnaires, Ratings, and Scales).
    1. In some cases, this may result in CRFs that do not conform to CDASH best practices; however, restructuring these questionnaires should not be done because it could invalidate them.
    2. The use of such questionnaires in their native format should not be considered to affect conformance to CDASH.

Guidelines for Tabulation Datasets

Tabulation dataset conformance with standards in this guide is minimally indicated by:

The following table illustrates minimum conformance to standards for tabulation datasets.

Metadataspec
NumConformanceImplementation
1

Representing

...

all collected, assigned, and relevant derived data in applicable datasets

All data generated per scientific and regulatory requirements are included in tabulation datasets.

...

2

Using domain specifications in this guide wherever applicable

A dataset is created using a domain specification in this guide when the scientific nature or role of the data is within the scope of a domain. Domains are extended or custom domain specifications are only used when data are different in nature and are not in scope for domains in this guide.

3

Following conventions for dataset naming

The dataset name is standardized per naming conventions and

...

per controlled terminology where applicable

...

.
4

Following guidance for dataset record structure

Dataset content is aligned with the record structure specified per the domain specification.
5Following core designations

All Required and Expected tabulation

Jira
showSummaryfalse
serverIssue Tracker (JIRA)
serverId85506ce4-3cb3-3d91-85ee-f633aaaf4a45
keyTOBA-791
variables are included as columns in the dataset. Required tabulation variables are populated for all records in the dataset. Permissible variables used to collect data are included in the dataset, even when no data for those variables were collected.

6Following conventions for variable namingThe names of variables in the dataset are standardized per domain specifications and other applicable guidance. Controlled terminology for domain prefixes is used as specified for variable naming.
7

Following guidance for variable types

The variables in the dataset are standardized for either numeric or character values as specified per the domain specification.

8

Populating variable values in alignment with this guide

All variables in the dataset are populated as expected per this guide including per general and domain-specific guidance, controlled terminology, and formatting.

The following table illustrates minimum conformance to standards for analysis datasets.

Metadataspec
NumConformanceImplementation
1ADaM fundamental principles are followed
  • Datasets and associated metadata clearly and unambiguously communicate the content and source of the datasets supporting the statistical analyses performed in a clinical study.
  • Datasets and associated metadata provide traceability to show the source or derivation of a value or a variable (i.e., the data's lineage or relationship between a value and its predecessor(s)). The metadata identify when and how analysis data have been derived or imputed. 
  • Datasets are readily usable with commonly available software tools.
  • Datasets are associated with metadata to facilitate clear and unambiguous communication. Ideally the metadata are machine-readable.
  • Datasets have a structure and content that allow statistical analyses to be performed with minimal programming. Such datasets are described as "analysis-ready." Datasets contain the data needed for the review and re-creation of specific statistical analyses. It is not necessary to collate data into analysis-ready datasets solely to support data listings or other nonanalytical displays.
2ADaM datasets follow the normative data found in the TIGDatasets follow the fundamental principles defined in ADaM and adhere as closely as possible to TIG variable naming and other conventions.
3Traceability principles are followedIn ADaM, it is assumed that the original data sources for ADaM datasets are SDTM datasets, even when ADaM datasets are derived from other ADaM datasets. ADaM has features that enable traceability from analysis results to ADaM datasets and from ADaM datasets to SDTM datasets. These conventions must be followed for ADaM datasets with a CLASS value of BASIC DATA STRUCTURE, OCCURRENCE DATA STRUCTURE, and SUBJECT LEVEL ANALYSIS DATASET. Other analysis datasets should follow this convention where practical and feasible.

Tabulation and analysis dataset conformance can be formally evaluated in relation to defined sets of conformance rules. The CDISC TIG Conformance Rules Version 1.0 (available at <placeholder, link pending>)includes rules for both tabulation and analysis datasets. Conformance rules for tabulation datasets assess the conformance of dataset structures and contents to the TIG tabulation standards. Conformance rules for analysis datasets assess the conformance of dataset construction to the TIG analysis standards

Conformance to standards in this guide can be proactively ensuring

and assessing conformance Conformant collection and representation of data is ensured by full adherence standards per this guide.

Conformance may be by data collection

Conformance to standards may be minimally assessed by confirming intended implementation per the guidelines below and by evaluating tabulation and analysis datasets in relation to conformance rules.

Pagenav