Conformant collection and representation of tobacco product study data is ensured by full adherence to standards per this guide. When this is not possible.... At a minimum, the following guidelines must be followed.
Conformance rules
SEND Conformance Rules are limited to those that are associated with SEND Implementation Guide (SENDIG)
text.
The following are considered to be outside the scope of SEND Conformance Rules:
• Rules that are not supported by a definitive statement in the SENDIG
• Business rules
• Data validation logic that is not specifically linked to Standard Data Tabulation Model (SDTM)
implementation guidance
• Rules that check across studies within a submissio
Need to point to conformance rules and note rules will be available at time of Public Review
Guidelines for Data Collection
Conformance to standards is assessed by confirming implementation of standards per this guide and by evaluating tabulation and analysis data in relation to conformance rules.
The following table illustrates minimum conformance to standards for data collection using CRFs.
Metadataspec |
---|
Num | Conformance | Implementation |
---|
1 | Following best practices for CRF design | The design of the CRF follows both recommendations for creating data collection instruments and recommendations for CRF design. | 2 | Following data collection variable naming conventions | Data collection variable naming conventions are applied in the operational database as specified. | 3 | Following standard wording for question text or prompts | The wording of CRF questions is standardized per specified question text or prompt for the data collection fields. | 4 | Following core designations. | All HR (Highly Recommended) and applicable R/C (Recommended/Conditional) data collection fields are |
|
Metadataspec |
---|
Guideline | Description |
---|
1 | Core designations must be followed. | All Highly Recommended and applicable Recommended/Conditional fields must be present in the CRF and/or operational database. | Match language in metadata description25 | Following guidance for CDISC Controlled Terminology | must be used. Specified controlled terminology must be used | Controlled terminology is used as specified to collect the data | in All codelists displayed in the CRF must use or directly map to the current published CDISC CT submission values, when it is available. Subsets of published CT, such as those provided in CDASH terminology, can be used.3 | Best practices for CRF design must be followed. | | 4 | The wording of CRF questions should be standardized. | - Specified Question Text or Prompts must be used to ask the question per associated guidance.
| 5 | Variable naming conventions should be used in the operational database. | - Variable naming conventions should be included in the operational database as specified in this guide.
| | 6 | Presenting validated QRS questions and reply choices as validated in the CRF. In some cases, this may result in CRFs that do not conform to CDASH best practices. The use of such questionnaires in their native format does not affect conformance. | All QRS questions and reply choices are presented as validated in the CRF. | 7 | Aligning data collection variables values and target tabulation variables values when collection and tabulation variable names are the same. Minimal processing, such as changing case when mapping a data collection variable value into a tabulation variable, does not affect conformance. | 6 | Data output by the operational database into a tabulation dataset variable | should require no additional processing if the CDASH and SDTM requires minimal processing when the data collection and tabulation variable names are the same. |
- An SDTM data programmer should be able to assume that data in an SDTMIG variable is SDTMIG-compliant. Minimal processing (e.g., changing case) does not affect conformance. This helps to ensure a quality deliverable, even if the programmer is unfamiliar with data capture practices.
| 7 | Validated questionnaires, ratings, or scales must present the questions and reply choices as validated. | - his must be followed to maintain the validity of a validated instrument. (See Section 8.3.12, QRS - Questionnaires, Ratings, and Scales).
- In some cases, this may result in CRFs that do not conform to CDASH best practices; however, restructuring these questionnaires should not be done because it could invalidate them.
- The use of such questionnaires in their native format should not be considered to affect conformance to CDASH.
| |
Guidelines for Tabulation Datasets
Tabulation dataset conformance with standards in this guide is minimally indicated by:
- Representation of all collected, assigned, and relevant derived data in applicable datasets.
- Following the complete metadata structure for data domains
- Following SDTMIG domain models wherever applicable
- Using specified standard domain names and prefixes per controlled terminology where applicable
- Using specified standard variable names
- Using specified standard variable labels
- Following SDTM-specified controlled terminology and format guidelines for variables, when provided
- Including all Required and Expected variables as columns in standard domains, and ensuring that all Required variables are populated
- Ensuring that each record in a dataset includes the appropriate Identifier and Timing variables, as well as a Topic variable
- Conforming to guidance in CDISC Notes column and general and domain-specific assumptions
- Conformance Rules
Standards for Analysis
The following table illustrates minimum conformance to standards for tabulation datasets.
Metadataspec |
---|
Num | Conformance | Implementation |
---|
1 | Representing all collected, assigned, and relevant derived data in applicable datasets | All data generated per scientific and regulatory requirements are included in tabulation datasets. | 2 | Using domain specifications in this guide wherever applicable | A dataset is created using a domain specification in this guide when the scientific nature or role of the data is within the scope of a domain. Domains are extended or custom domain specifications are only used when data are different in nature and are not in scope for domains in this guide. | 3 | Following conventions for dataset naming | The dataset name is standardized per naming conventions and per controlled terminology where applicable. | 4 | Following guidance for dataset record structure | Dataset content is aligned with the record structure specified per the domain specification. | 5 | Following core designations | All Required and Expected tabulation Jira |
---|
showSummary | false |
---|
server | Issue Tracker (JIRA) |
---|
serverId | 85506ce4-3cb3-3d91-85ee-f633aaaf4a45 |
---|
key | TOBA-791 |
---|
| variables are included as columns in the dataset. Required tabulation variables are populated for all records in the dataset. Permissible variables used to collect data are included in the dataset, even when no data for those variables were collected. | 6 | Following conventions for variable naming | The names of variables in the dataset are standardized per domain specifications and other applicable guidance. Controlled terminology for domain prefixes is used as specified for variable naming. | 7 | Following guidance for variable types | The variables in the dataset are standardized for either numeric or character values as specified per the domain specification. | 8 | Populating variable values in alignment with this guide | All variables in the dataset are populated as expected per this guide including per general and domain-specific guidance, controlled terminology, and formatting. |
|
The following table illustrates minimum conformance to standards for analysis datasets.
Metadataspec |
---|
Num | Conformance | Implementation |
---|
1 | ADaM fundamental principles are followed | - Datasets and associated metadata clearly and unambiguously communicate the content and source of the datasets supporting the statistical analyses performed in a clinical study.
- Datasets and associated metadata provide traceability to show the source or derivation of a value or a variable (i.e., the data's lineage or relationship between a value and its predecessor(s)). The metadata identify when and how analysis data have been derived or imputed.
- Datasets are readily usable with commonly available software tools.
- Datasets are associated with metadata to facilitate clear and unambiguous communication. Ideally the metadata are machine-readable.
- Datasets have a structure and content that allow statistical analyses to be performed with minimal programming. Such datasets are described as "analysis-ready." Datasets contain the data needed for the review and re-creation of specific statistical analyses. It is not necessary to collate data into analysis-ready datasets solely to support data listings or other nonanalytical displays.
| 2 | ADaM datasets follow the normative data found in the TIG | Datasets follow the fundamental principles defined in ADaM and adhere as closely as possible to TIG variable naming and other conventions. | 3 | Traceability principles are followed | In ADaM, it is assumed that the original data sources for ADaM datasets are SDTM datasets, even when ADaM datasets are derived from other ADaM datasets. ADaM has features that enable traceability from analysis results to ADaM datasets and from ADaM datasets to SDTM datasets. These conventions must be followed for ADaM datasets with a CLASS value of BASIC DATA STRUCTURE, OCCURRENCE DATA STRUCTURE, and SUBJECT LEVEL ANALYSIS DATASET. Other analysis datasets should follow this convention where practical and feasible. |
|
Tabulation and analysis dataset conformance can be formally evaluated in relation to defined sets of conformance rules. The CDISC TIG Conformance Rules Version 1.0 (available at <placeholder, link pending>)includes rules for both tabulation and analysis datasets. Conformance rules for tabulation datasets assess the conformance of dataset structures and contents to the TIG tabulation standards. Conformance rules for analysis datasets assess the conformance of dataset construction to the TIG analysis standards.
conformance rules