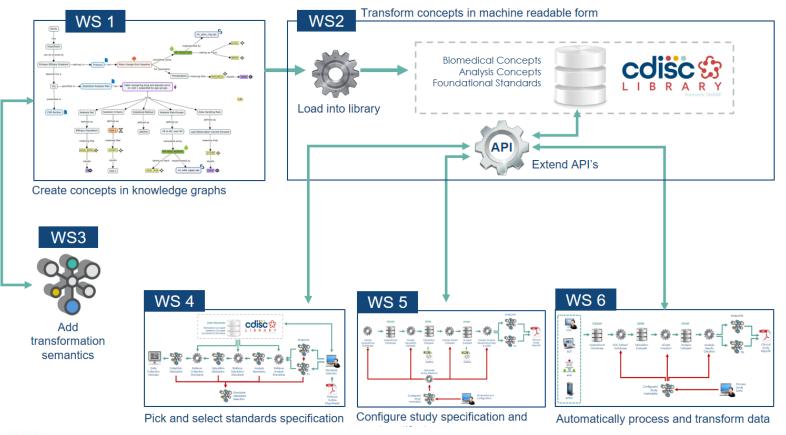
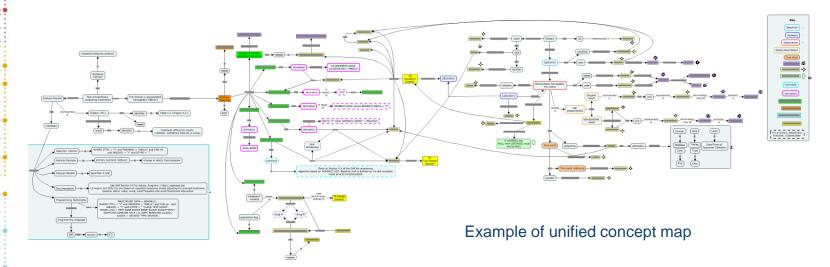


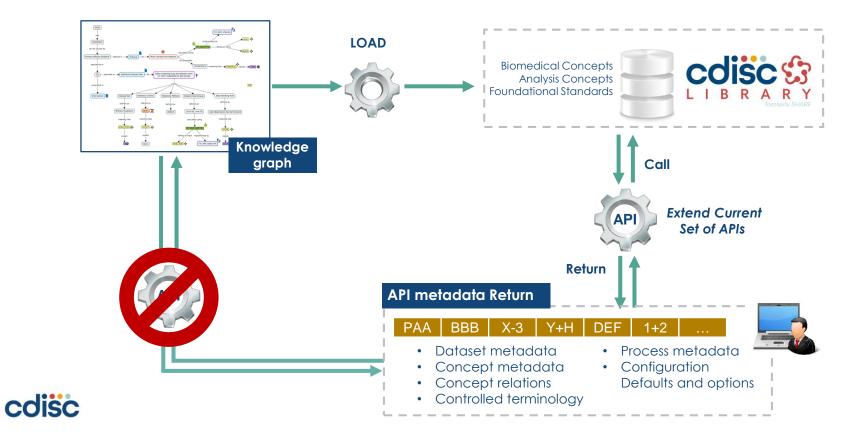
CDISC 360 status update: starting the journey


Peter Van Reusel, CSO, CDISC Sam Hume, DSc, VP Data Science, CDISC 3 September 2019

cdisc

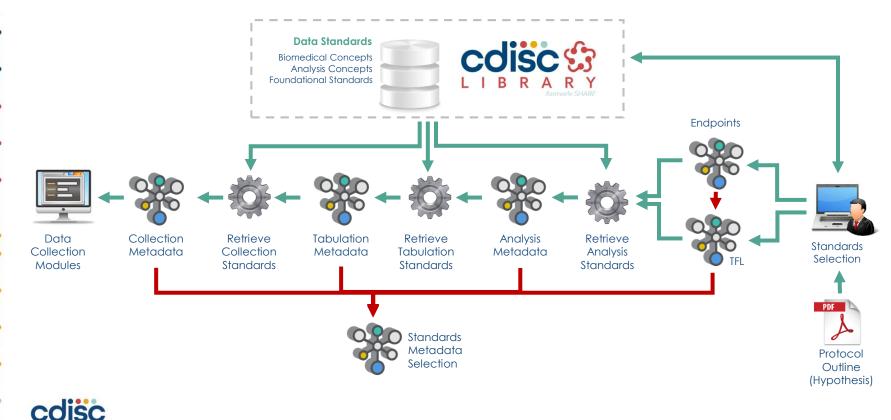

CDISC 360 What is CDISC 360?

Workstreams Overview

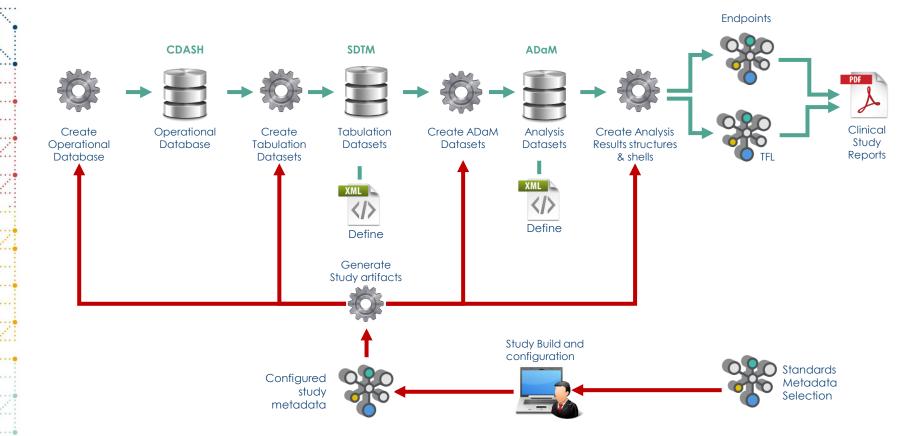


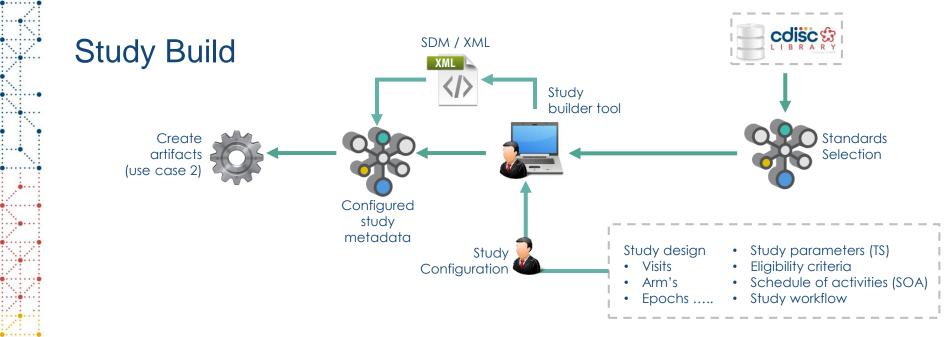
WS1 Inputs

- 360 Cmap cloud has initial mapping of one Diabetes TAUG endpoint:
 - Unified concept map (analysis and biomedical concept combo)
 - Split concept map
 - Analysis results map
 - Analysis parameter map
 - Biomedical concept map to SDTM
 - Biomedical concept map to Data Collection



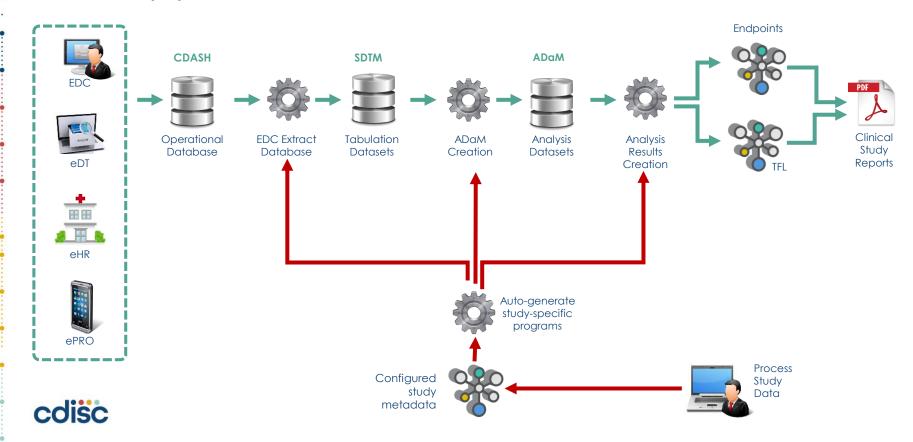
CDISC Library API extension


Use Case 1 : End to Start specification

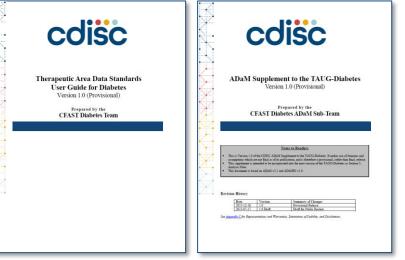

Selecting standards concepts and linked metadata needed for a study

Use Case 2 : Start to End Study Metadata

Adding study design, concept configuration & generate artifacts



ੁ	NU	u)	/ Par	anne	21012	(13)	SVCDRLF	TSVCI
XYZ	TS	1	ADDON	Existing Treatments	Y	C49488	CDISC	2011-0
XYZ	75	1	AGEMAX	Planed Maximum Age of Subjects	1620Å		ISO 8911	
xuz	75	1	AGEMEN	Planed Maintan Age of Subjects	718M		ISO \$911	
XYZ	TS	1	LENGTH	Planned Trial Leagth	P5M		ISO \$601	
XYZ	TS	1	PLANSUB	Planned Number of Subjects	300			
XYZ	TS	1	RANDOM	Trial is Randomized	Y	C49488	CDISC	2011-
XYZ	75	1	SEXPOP	Sex of Participants	BOTH	C49636	CDISC	2011-
xvz	TS	1	STOPRULE	Study Stop Rales	INTERIM ANALYSIS FOR FUTILITY			
XYZ	TS	1	TBLIND	Trial Blinding Schema	DOUBLE BLIND	C15228	CDISC	2011-
XYZ	TS	1	TCNTEL	Control Type	PLACEBO	C49648	CDISC	2011-
XïZ	TS	1	TDIORP	Diagnosis Group	Neurofibromatosis Syndrome (Disorder)	19133005	SNOMED	
XYZ	TS	1	TINDTP	Trial Indication Type	TREATMENT	C49656	CDISC	2011-


Use Case 3 : Start to End Data Processing

Automatic population of data into artifacts

Project Standards Scope Diabetes TAUG

- 1 or 2 statistical endpoints
- 3 to 4 ADaM datasets
- 7 to 8 SDTM datasets
- 15 Data Collection Modules

→ Looking for your contribution: Anonymized Diabetes data

Standards Selection (for the "360 Test Study")

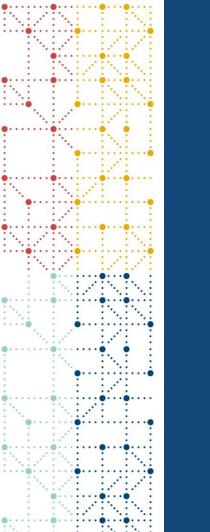
- 1 or 2 statistical end points
 - Analysis of Glycated Hemoglobin
 - Summary of Hypoglycemic episodes

~3-4 ADaM datasets

- ADSL(<u>Subject-Level Analysis Data (ADSL</u>))
- Hemoglobin A1C Analysis Dataset (HbA1c Analysis Dataset)
- Hypoglycemic Episodes Analysis Dataset (<u>Hypoglycemic Episodes Analysis Dataset</u>)
- Hypoglycemic Episodes Summary Dataset (<u>Hypoglycemic Episodes Summary Dataset</u>)

• ~7-8 SDTM datasets

- DM (Demographics, to support standard variables in ADSL)
- VS (Vital Signs, for height and weight in ADSL)
- CM (Concomitant Meds, to support stratification by background treatment, and for treatments of hypoglycemic events)
- LB (for Hemoglobin A1C data)
- CE and FACE (for data on hypoglycemic events)
- EX, ML (for data about meals and study treatments relative to hypoglycemic events)
- Trial Design datasets (for arms, visit schedule, definition of hypoglycemic events as disease milestones)


• ~15 CDASH CRFs

• CDASH CRFs needed to support SDTM datasets above. One CRF will support collection of data about hypoglycemic events that will be mapped to multiple SDTM domains.

For the "360 Test Study" we will, for these standards:

- Develop standard concepts
- Store concepts in prototype CDISC Library
- Pick & select standards from Library (use case 1)
- Configure study spec & create artifacts (use case 2)
- Populate study artifacts with data (use case 3)

CDISC 360 The CDISC 360 journey has started...

Project Timeline

#	Stage	Start	End	
1	Initiation, scoping, and internal staffing	Oct 2018	Nov 2019	
2	Planning, recruiting CDISC member participants	Dec 2019	Feb 2019	
3	Align with Transcelerate Digital Data Flow Initiative	Oct 2018	Jan 2019	
3	Onboarding CDISC member participants	Mar 2019	Apr 2019	
5	Kickoff, workstreams briefing	Apr 2019	Apr 2019	
6	Execution of agile sprints	Apr 2019	Oct 2019	We are
7	Project evaluation – Stage 1 (CDISC US Interchange)	Oct 2019	Oct 2019	
8	Execution of agile sprints	Nov 2019	Mar 2020	
9	Project evaluation – Stage 2 (CDISC EU Interchange)	Mar 2020	Mar 2020	
10	Execution of agile sprints	Apr 2020	Nov 2020	
11	Project evaluation – Stage 3 (CDISC US Interchange)	Nov 2020	Nov 2020	

CDISC 360 Advisory Committee

CDISC 360 Leadership Team

- David Bobbitt CDISC Chief Executive Officer
- Peter Van Reusel CDISC Chief Standards Officer
- Sam Hume CDISC Vice President Data Sciences
- Barry Cohen CDISC 360 Project Manager

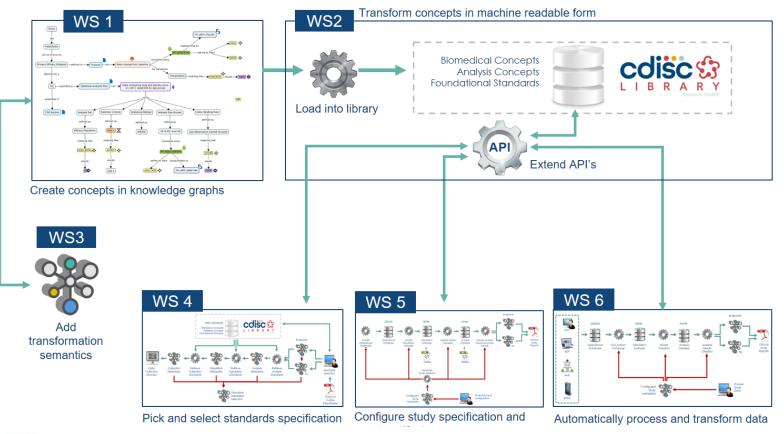
CDISC 360 Board Representation

- Chris Decker dWise
- Dave Evans Accenture
- Dave Hardison Deloitte
- Pandu Kulkarni Lilly
- Steve Rosenberg Oracle
- Ulo Palm * Transcelerate

CDISC 360 Committee Members

- Praveen Garg Astra Zeneca
- Patrick Genyn Johnson & Johnson
- Brooke Hinkson Merck
- Ulo Palm Allergan
- Mike Hamidi CDISC

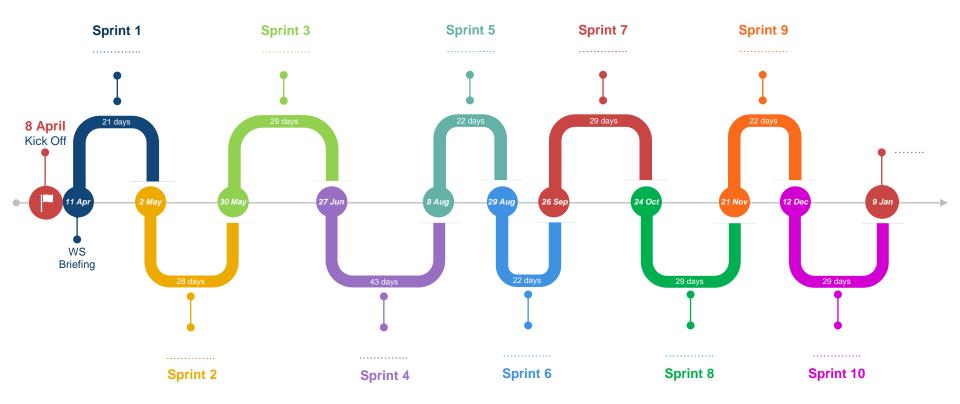
Participation Summary


- 23 Companies
- 63 Resources specified
- Organization Types:
- Pharma-Biotech Sponsor: 13
- CRO: 4
- Technology Provider: 6

Workstreams Overview

Workstream Teams

WS 4
ead: Mikkel Traun
Trevor Mankus
Stephen Pearce
Rajesh Modi
Bharat Palakurthi
Lex Jansen
Sujit Khune


Lead: Tianna Umann Lauren Shinaberry Asavari Mehta Ram Govindaraju Devi Gohimukkula Nik Pemble Rick Rozinskas Francis Dsa

WS 5

WS 6

Lead: Bhavin Busa Rick Rozinskas Julie Smiley Guang-liang Wang Gloria Jones Gina Selby Naveen Kommuru Jimmy Zhao John Brega Kathleen Hectors Anoop Ambika Spandana Chelmilla

360 Sprint Cycles for 2019

Collaboration Tools

- CDISC 360 Wiki
 - Collaborative content
- Jira
 - Issues management
- CMAP Cloud
 - Concept map development
- Slack
 - Instant messaging
- Technology Platform
 - Use case demo environment

ŸJIRA

COISC Clear Data. Clear Impact

Microsoft & CDISC 360

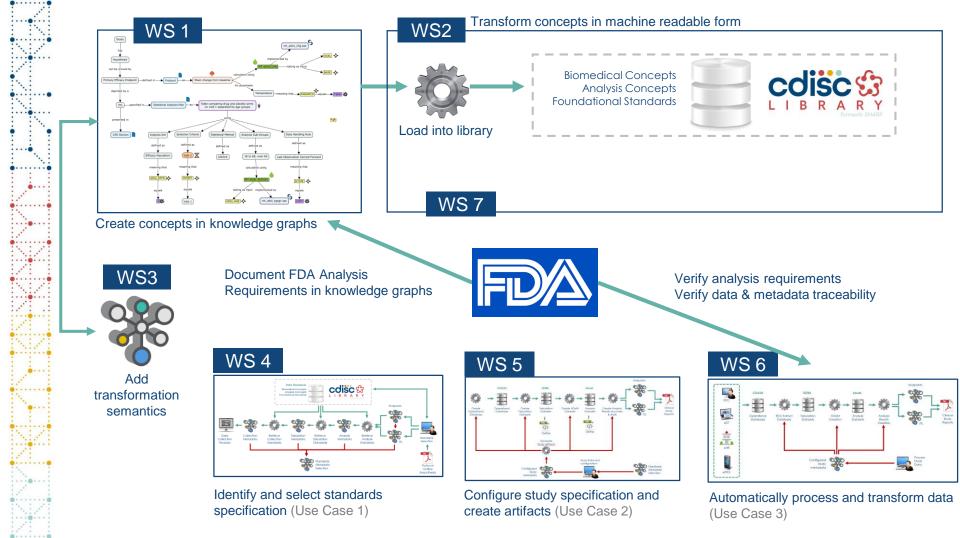
Collaboration, Development & Proof of Capability Platform

Paul Slater and Ryan Tubbs – Co-founders, Clinical Research Innovation Hub Kirk Carver, Solution Architect Tianna Umann PA-C, MA, Solution Architect

Set-up Collaborative Computing platform

- Microsoft will work with CDISC to
 - Set up an Azure Cloud subscription
 - Provide admin rights to the technical team and workstream leads
- Microsoft will deploy and support the following platform services:
 - Azure Active Directory structure for admin and role based access control
 - Azure Data Lake Storage (ADLS v2) for meta data storage and data sharing
 - Azure Data Science Virtual Machine to enable statistical programs (R, Python, etc.)
 - Azure Virtual Machines to enable applications such as Pinnacle 21 and SAS

→ CDISC to discuss deployment licenses with Pinnacle 21 and SAS



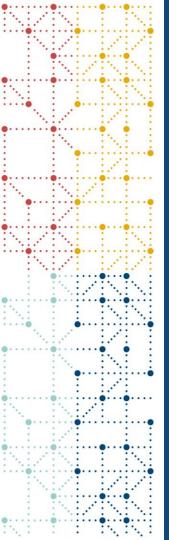
FDA Use Case

- Use case to include one or more safety analyses for diabetes
 - FDA SMEs to provide exact requirements and definitions
 - May include a commonly used safety analysis and a rarely used safety analysis
- Develop concept maps for the safety analyses as defined by FDA SMEs
 - Use WS1 concept maps as a starting point
- Goal: ensure the standards meet the needs of the reviewer
 - Could be used as a data fitness test to confirm the needed data is present for the safety analyses
 - These templates could be very useful to implementers/sponsors
- FDA is very interested in following the progress of the FHIR, LOINC, and UCUM use cases

Current Activities

Preparing for the US Interchange

Session 2: Second Opening Plenary


Dr. Douglas Peddicord, Chair, CDISC Board of Directors 11:15 - 13:00

CDISC 360: Preparing for a Bright Future Chris Decker and Dave Evans, CDISC Board

CDISC 360 Update Peter Van Reusel, CDISC

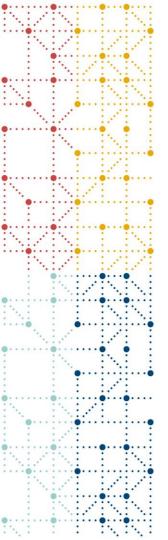
CDISC Library: Integrating and Surfacing 360 Content Sam Hume, CDISC

CDISC 360

Expected Outcome

Expected Outcome (1)

- Learn
 - What works and what doesn't
- Assessment
 - Technology Gap Analysis
 - Standards Gap Analysis
- Building a base for the future
 - Effort calculation
 - Cost / Benefit Analysis
 - Scale up to deliver the standards metadata needed
 - · Partnerships with vendors to ensure tools are made available



Expected Outcome (2)

Provide the groundwork/blueprint to:

•	CDISC	Pharma-Biotech	Technology Providers	Regulatory
	 Scale up development of concept-based standards definitions for clinical data Continued Development and Curation of CDISC 360 Standards 	 Change environments to automate study build and data processing More focus on sciences, less on repeating tasks Collaborative Data Standards donation to CDISC 360 	 Support Pharma- Biotech organizations by providing tools and solutions that enable end to end automation 	 Communicate to industry its requirements for standardized analyses through CDISC 360 standards

Thank You!

