

# BIOBANKING – INVENTORY TOOL BASED ON SDTM

VALERIE PIERRON – CATHERINE BOULARD - IPSEN 24 JUNE 2019

## Agenda

01 IPSEN CONTEXT

03 IMPACTS FOR IPSEN

02 BIOBANKING WHAT FOR 04 CHALLENGES / NEXT STEPS

External Ipsen



## **IPSEN CONTEXT**



### 1 IPSEN CONTEXT

#### **Outsourcing**



All clinical studies are outsourced to CROs under the oversight of IPSEN (full-service and functional CROs)

Ipsen is under contract with 2 Biorepositories

Biomarkers analysis is outsourced to CROs

#### **Key actors**



BIOMARKERS TEAM
BIOMETRY
CLIN OPS
CROs (full-service / functional)
CENTRAL LAB
BIOREPOSITORIES
CROs BIOMARKER
QUALITY
IT

#### **Standards and Tools**



Standard model in production (IPSEN SDTM): July 2015

Clinical DWH in production - CTDC : August 2016

Biobanking tool in production: December 2018

External Ipsen



Biobanking: what for?



### 02 BIOMARKERS DEFINITIONS

A biomarker is a biological entity that is objectively measured and evaluated as an indicator of a normal or pathogenic process, or pharmacological responses to a therapeutic intervention

## Predictive Biomarkers Patient selection / stratification

« Identify right subset of patient which could respond to the drug »

#### **Safety Biomarkers**

« Identify subsets of patients experiencing a particular safety concern »

## Pharmacodynamic / Efficacy Biomarkers (PoM, PoP, PoC)

« reflect biological consequences of target engagement to monitor drug »

#### **Prognostic Biomarkers**

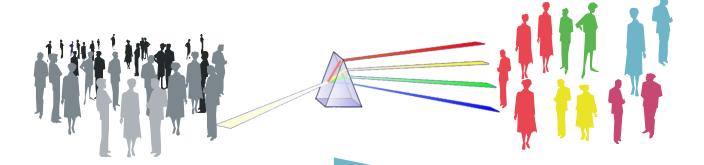
« Identify subsets of patients most likely to have a particular outcome »

Biomarkers Identification, Confirmation, Validation and Assay Validation can be done during clinical study and/or supported by Biobanked samples



#### BIOBANKING FOR FUTURE RESEARCH

# Exploratory Biomarkers


- Part of the exploratory objectives of the study protocol
- Biomarker measurements are therefore planned as part of the clinical trial
- Data is captured in the clinical database (samples + results)
- Biomarker analysis are planned in a dedicated SAP and as such reported in the TFL & CSR

# Biobanking Activities

- Described in the exploratory objectives of the study protocol
- Biobanking is optional for subject engaged in the study and subject sign the optional consent for biobanking
- Samples are collected during different study visits (samples only in the clinical DB) and sent to a Biorepository
- Samples are stored for 15 years and used for research purposes
- This exploratory activity of biomarker research is not part of the clinical trial thus not part of the SAP, TFLs neither the CSR



#### BIOBANKING OBJECTIVES - TO SUPPORT PERSONALIZED MEDECINE



## Derisking the unexpected clinical trial results

- You often do not get out from a Clinical trial (phase I, II, III) what you expected....
- Unexpected results means unpredicted markers

## Biomarkers evaluation along the clinical study

 Validation of early biomarkers hypothesis to drive better patient identification and treatment efficacy monitoring

#### Biobanking for research

- Disease understanding
- Validation of new targets
- Support Biomarkers research towards personalized therapy: (safety, efficacy, selection, prognostic Biomarkers...)





## **IMPACTS FOR IPSEN**



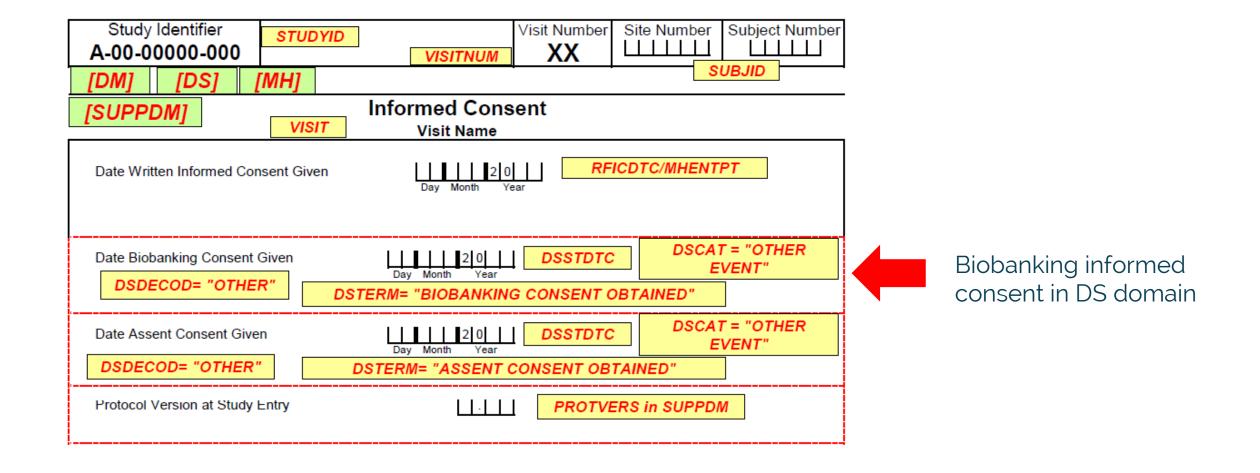
### **103** IPSEN NEEDS RELATED TO BIOBANKING

To ensure proper management of samples from their collection to their destruction in respect to ethical and regulatory guidelines, it is necessary to develop / define :










Data Privacy - Data Protection - Sample Traceability - Respect Subject Consent

Decision to track samples based on BS and BE domains (SDTM domains from PGX)



### ORF PAGE FOR BIOBANKING INFORMED CONSENT - EXAMPLE





### O3 SDTMIG - PGX DOMAINS

#### 2.1 SDTM Domains

The domains introduced in this document are intended to hold data that fall into one of three general categories: data about biospecimens, data about genetic observations, and data that define a genetic biomarker or assign it to a subject.

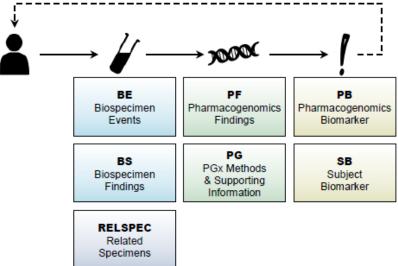



Figure 2: SDTMIG-PGx Domains and Datasets

BE = life cycle of the sample

BS = characteristics of the samples / biospecimens

| Class                                                          | General Obser | Special-Purpose |         |
|----------------------------------------------------------------|---------------|-----------------|---------|
| Category                                                       | Event         | Finding         |         |
| Data about biospecimens                                        | BE            | BS              | RELSPEC |
| Data about genetic observations                                |               | PF, PG          |         |
| Data that define a genetic biomarker or assign it to a subject |               |                 | PB, SB  |

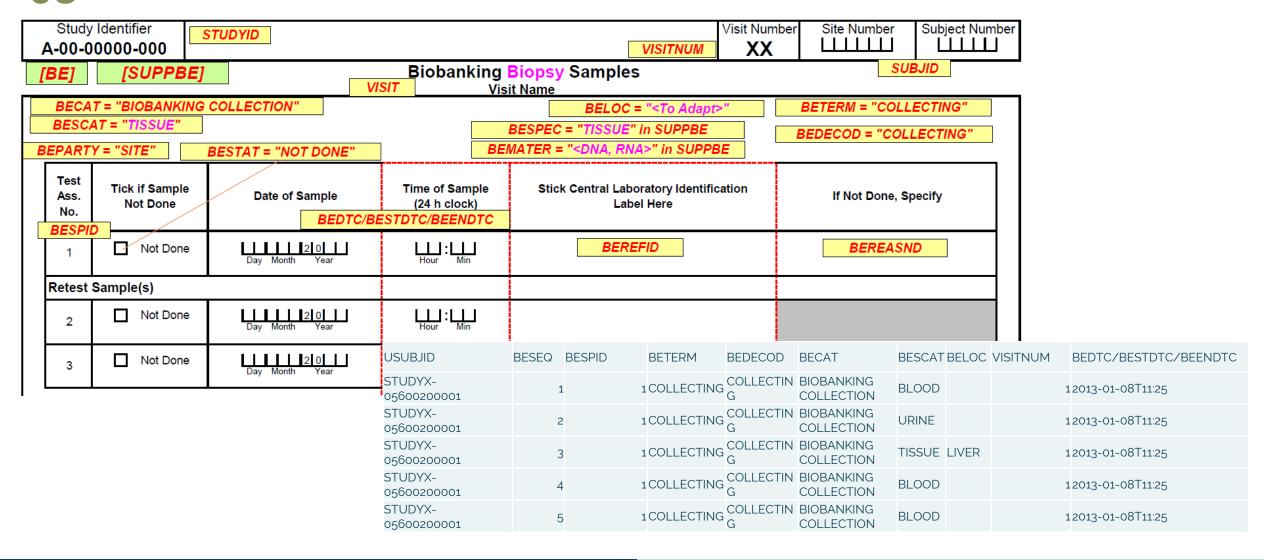


### O3 SDTMIG - PGX DOMAINS - BE and BS DOMAINS

### BE

## Biospecimen Events Domain

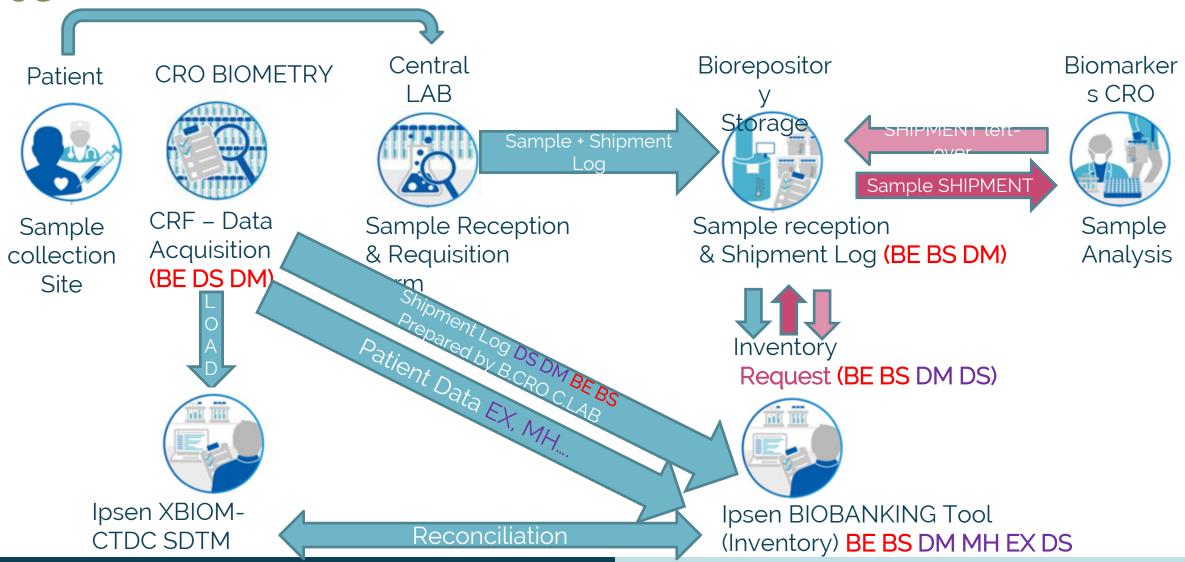
- Events class domain used to capture information about actions taken that affect a specimen or alter its status
- Include what the action taken was (e.g., transportation, freezing, .......), when the action occurred (the date/time associated with it), and who or what party became accountable for the specimen (e.g., site, laboratory)


### BS

## Biospecimen Findings Domain

 Findings class domain contains the details regarding the characteristics of biospecimens and extracted samples (e.g., RNA, DNA) such as specimen volume, quantity of extracted sample, specimen condition and the sample quality or integrity of RNA samples....




### O3 CRF PAGE FOR BIOBANKING - EXAMPLE





03

#### **BIOBANKING PROCESS & DATA FLOW**





#### BIOBANKING TOOL OBJECTIVES = INVENTORY DATA BASE

During the Sample life cycle, the following information is collected, tracked and imported in the IPSEN BIOBANKING TOOL (DB) with an SDTM structure :



Shipment log - Sample flow : BE + BS domains

Demographic (DM): SUBJID, DATE/TIME OF BIRTH, COUNTRY, STUDY SITE IDENTIFIER,

SEX

Disposition (DS): DSTERM (Biobanking consent obtained) + date

Exposure data (EX), ARM

Medical History (MH)



This information will allow IPSEN to track the samples to locate them at any time :

- to know the quantity per sample type of specimen available
- to allow Scientist autonomous selection of biobanked samples according to clinical data,
- to analyze biobanking results in relation to associated clinical data and/or to exploratory biomarker results to comply with regulation, authority inspection and patient consent



## 03

### INVENTORY DATA BASE: EXAMPLE - EXTRACT

| DM                  | DM                                     | DM                    | DM      | DM                       | DM  | DS                                               | DS                                                   | BE              | BE                                               | SUPPBE        | SUPPBE   | BE           | BE                                            | BE                                          |
|---------------------|----------------------------------------|-----------------------|---------|--------------------------|-----|--------------------------------------------------|------------------------------------------------------|-----------------|--------------------------------------------------|---------------|----------|--------------|-----------------------------------------------|---------------------------------------------|
| STUDYID             | SUBJID                                 | BRTHDTC               | COUNTRY | SITEID                   | SEX |                                                  | DSSTDTC where DSTERM= 'BIOBANKIN G CONSENT OBTAINED' | BEREFID         | BETERM                                           | BESPEC and    | land     | VISIT        | BESTDTC                                       | BENDTC                                      |
| Study<br>Identifier | Subject<br>Identifier for<br>the Study | Date/Time of<br>Birth | Country | Study Site<br>Identifier | Sex | Reported<br>Term for the<br>Disposition<br>Event | Start Date/Time of Disposition Event                 | Reference II )  | Reported<br>Term for the<br>Biospecimen<br>Event | Specimen Type | Material | Visit Name   | Start<br>Date/Time of<br>Biospecimen<br>Event | End<br>Date/Time of<br>Biospecimen<br>Event |
| ABC134              | 25010300001                            | 1971                  | FRA     | 250103                   | F   | BIOBANKING<br>CONSENT<br>OBTAINED                | 2005-01-18                                           | 1234567XXX1     | COLLECTING                                       | BLOOD         | RNA      | VISIT 2 DAY1 | 2005-03-20                                    |                                             |
| ABC134              | 25010300001                            | 1971                  | FRA     | 250103                   | F   | BIOBANKING<br>CONSENT<br>OBTAINED                | 2005-01-18                                           | 1234567XXX1     | SHIPPING                                         | BLOOD         | RNA      | VISIT 2 DAY1 | 2005-03-20                                    |                                             |
| ABC134              | 25010300001                            | 1971                  | FRA     | 250103                   | F   | BIOBANKING<br>CONSENT<br>OBTAINED                | 2005-01-18                                           | 1234567XXX1     | RECEIVING                                        | BLOOD         | RNA      | VISIT 2 DAY1 | 2005-03-21                                    |                                             |
| ABC134              | 25010300001                            | 1971                  | FRA     | 250103                   | F   | BIOBANKING<br>CONSENT<br>OBTAINED                | 2005-01-18                                           | 1234567XXX1     | STORING                                          | BLOOD         | RNA      | VISIT 2 DAY1 | 2005-03-21                                    | 2005-05-25                                  |
| ABC134              | 25010300001                            | 1971                  | FRA     | 250103                   | F   | BIOBANKING<br>CONSENT<br>OBTAINED                | 2005-01-18                                           | 1223567XXX1-R01 | EXTRACTING                                       | RNA           | RNA      | VISIT 2 DAY1 | 2005-05-25                                    |                                             |
| ABC134              | 25010300001                            | 1971                  | FRA     | 250103                   | F   | BIOBANKING<br>CONSENT<br>OBTAINED                | 2005-01-18                                           | 1223567XXX1-R01 | STORING                                          | RNA           | RNA      | VISIT 2 DAY1 | 2005-05-25                                    | 2005-07-25                                  |
| ABC134              | 25010300001                            | 1971                  | FRA     | 250103                   | F   | BIOBANKING<br>CONSENT<br>OBTAINED                | 2005-01-18                                           | 1223567XXX1-R01 | DESTROYING                                       | RNA           | RNA      | VISIT 2 DAY1 | 2005-07-25                                    |                                             |





## **CHALLENGES & NEXT STEPS**

#### **CHALLENGES**



## **NEXT STEPS**



- Complex project due to the involvement of many experts and different teams (biomarker, biometry, clin ops, quality, IT ...)
- Process that requires training each clinical team and outsourced CROs every time
- Biorepositories : had to adapt to our data formats. They are not SDTM compliant
- Tool upgrade is needed : variables to be added
- Insufficiently automated reconciliation between clinical data and inventory data
- Standardization of results ongoing



## THANK YOU





