

A proprietary, CDASH/SDTMhybrid data model to expedite clinical data review

CDISC UK Network, 3 April 2019

Lieke Gijsbers, OCS Life Sciences, the Netherlands Nele Claes, Janssen R&D, Belgium

harmaceutical companies of Johnson Johnson

Framing the picture

- At Janssen, Data Management (DM) activities are outsourced to DM CROs
 - DM CROs are contracted to deliver SDTM datasets to Janssen during trial conduct
 - DM CROs prepare the SDTM Submission Package after Database Lock
 - Janssen DM performs ongoing Quality Control on these SDTM deliverables

- In 2016, Janssen identified the need to expedite clinical data review
 - Early access to data for Real Time Learning and Decision Making
 - The idea of a new data model was introduced

Proof of Concept

 PoC of a controlled & proprietary data model: Data Review Model (DRM)

- Use cases:
 - How can information in DRM be most logically clustered?
 - Avoiding the use of SUPPQUAL and Findings About data types
 - How to represent relationships in DRM?
 - Avoiding the need for RELREC as known in SDTM
 - Do new datasets and variables, not possible to include in SDTM, add value in DRM?
 - Will DRM help when mapping new exploratory data streams?
 - Will DRM allow an easy transformation to SDTM?

<u>fohnson 4 Johnson</u>

Proof of Concept

- Findings of proof of concept:
 - Less complex data model compared to CDISC SDTM
 - Janssen-controlled DRM: less vulnerable to changing CDISC SDTM and controlled terminology versions
 - Stores additional `value added' content
 - Not a data submission model: less strict on implementation on trial level

- Other learnings:
 - Enabling early access to the data in the DRM model requires a highdegree of re-use, from standard or previous trials
 - Data harmonization will require a controlled environment
 - DRM to SDTM conversion was relatively easy

Life Sciences

Initiation of a pilot project in 2017

Next slides will cover...

- Key principles of the Janssen Data Review Model
- Insights into the conversion framework used during the DRM pilot phase
- Learnings, next steps and future perspectives

Data Review Model (DRM)

- Strongly based on CDISC CDASH and SDTM
- DRM adheres to the fundamentals of SDTM:
 - Vertical structure
 - Observations are reported in a series of domains
 - Dataset and variable names are standardized

- STUDYID, SITEID, SUBJID, VISITNUM, VISIT
- --TERM, --TRT, --TESTCD
- --OCCUR, --STAT, --ORRES, --ORRESU

- --DY
- --STRESC, --STRESN, --STRESU

- --DTC
- --DAT
- --TIM

- "Were any adverse events experienced?"
- "Were any medications taken?"
- "Were examination performed?"

- AESEQ1
- AESEQ2
- AESEQ3

• --CNRESC, --CNRESN, --CNRESU

- Source of the raw data
- CRF page name and number
- Date indicating when the record was initially created and last updated

Mapping Framework

- Data converted using the mapping framework¹
- Implemented in Janssen's SAS[®] Life Science Analytics Framework

¹Bas van Bakel, OCS Consulting, DIY: Create your own SDTM mapping framework, PhUSE 2016, Paper CD03

Janssei

14

Johnson Johnson

Mapping Specifications

Excel spreadsheet containing all:

- Source variables
- Target DRM variables
- Mapping specifications
- Translation of the specifications into SAS (pseudo-)code needed to generate the DRM variables

DATASET	VARIABLE	DRM_DS	DRM_VAF	SPECIFICATION	FUNCTION
source.ae_gl_900yn	PROJECT	AE	STUDYID	Recode according to STUDYID recoding list	RECODE [STUDYID]
source.ae_gl_900yn	STUDYID			Not mapped	NOT MAPPED
source.ae_gl_900yn	SUBJECT	AE	SUBJID	Left justify and uppercase source variable	FUNCTION [SUBJID = STRIP(UPCASE(SUBJECT));]
source.ae_gl_900yn	SITENUMBER	AE	SITEID	Left justify and uppercase source variable	FUNCTION [SITEID = STRIP(UPCASE(SITENUMBER));]
source.ae_gl_900yn	INSTANCENAME	AE	VISIT	Recode according to VISIT recoding list	RECODE [VISIT]
source.ae_gl_900yn		AE	AECAT	Assign value 'ADVERSE EVENTS/SERIOUS	FUNCTION [AECAT = 'ADVERSE EVENTS/SERIOUS
				AES'	AES';]
source.ae_gl_900yn	AEYN	AE	AEYN	Copy from source variable	COPY
source.ae_gl_900yn	AEYN_STD			Not mapped	NOT MAPPED
source.ae_gl_900	PROJECT	AE	STUDYID	Recode according to STUDYID recoding list	RECODE [STUDYID]
source.ae_gl_900	STUDYID			Not mapped	NOT MAPPED
source.ae_gl_900	SUBJECT	AE	SUBJID	Left justify and uppercase source variable	FUNCTION (SUBJID = STRIP(UPCASE(SUBJECT));]
source.ae_gl_900	SITENUMBER	AE	SITEID	Left justify and uppercase source variable	FUNCTION (SITEID = STRIP(UPCASE(SITENUMBER));)
source.ae_gl_900	INSTANCENAME	AE	VISIT	Recode according to VISIT recoding list	RECODE [VISIT]
source.ae_gl_900	AETERM	AE	AETERM	Copy from source variable	COPY
source.ae_gl_900	AECAT	AE	AESPINT	Copy from source variable	COPY
source.ae_gl_900	AECAT_STD			Not mapped	NOT MAPPED
source.ae_gl_900	AESEV	AE	AESEV	Copy from source variable	COPY
source.ae_gl_900	AEREL	AE	AEREL	Copy from source variable	СОРУ
		AE		POSTSTEP1: COMBINE SOURCE DATASETS.	POSTSTEP1 [
				Combine the mapped source datasets	PROC sort DATA=work.mapped_source_ae_gl_900;
				ae_gl_900yn and ae_gl_900 by merging on	BY studyid siteid subjid;
				calculated values of STUDYID, SITEID and	RUN;
				SUBJID.	
					PROC sort
					DATA=work.mapped_source_ae_gl_900yn;
					BY studyid siteid subjid;
					RUN;
					DATA work.mapped_combined_ae1;
					MERGE work.mapped_source_ae_gl_900
					work.mapped_source_ae_gl_900yn;
					BY studyid siteid subjid;
					RUN:1

Mapping Framework

- Data converted using the mapping framework¹
- Implemented in Janssen's SAS[®] Life Science Analytics Framework

¹Bas van Bakel, OCS Consulting, DIY: Create your own SDTM mapping framework, PhUSE 2016, Paper CD03

16

Johnson Johnson

Target metadata

- Excel spreadsheet defining:
 - Order of DRM variables
 - The attributes of the DRM variables
 - Key variables for the sorting of records

DOMAIN	NAME	LABEL	TYPE	LENGTH	FORMAT	SORTVAR
AE	STUDYID	Study Identifier	С	40		1
AE	SITEID	Site Number	C	20		
AE	SUBJID	Subject Identifier	C	10		2
AE	VISIT	Visit	C	60		
AE	AECAT	Category	С	200		3
AE	AEYN	Were any Adverse Events Experienced?	C	9		
AE	AETERM	What is the Adverse Event Term?	C	200		4
AE	AESPINT	Is this an AE of Special Interest?	C	120		
AE	AESEV	Severity	С	24		
AE	AEREL	Relationship to Study Treatment	С	33		

DRM Implementation Process

Create standard/global (re-usable) mappings for 17 DRM domains

DATASET	VARIABLE	DRM_DS	DRM_VAP	SPECIFICATION	FUNCTION	DOMAIN	NAME	LAREL	TYPE	LENGTH	FORMAT	SORTVA
source.ae_gl_900y	n PROJECT	AE	STUDYID	Recode according to STUDYID recoding list	RECODE [STUDYID]	DOMAIN		LADLL	TIFL	LENGTH	TORMAT	JOINTVA
source.ae_gl_900y	n STUDYID			Not mapped	NOT MAPPED	AE	STUDYID	Study Identifier	C	40		1
source.ae_gl_900y	n SUBJECT	AE	SUBJID	Left justify and uppercase source variable	FUNCTION [SUBJID = STRIP(UPCASE(SUBJECT));]				-			-
source.ae_gr_900y		AE	VISIT	Percede according to VISIT recoding list	PECODE (VISIT)	AF	SITEID	Site Number	C	20		
source ae gl 900y			AFCAT	Assign value 'ADVERSE EVENTS/SERIOUS	FUNCTION [AFCAT = 'ADVERSE EVENTS/SERIOUS	۸E	CLIDIID	Subject Identifier	C	10		2
				AES'	AES':]	AC	JUDID	Subject identifier	C	10		2
source.ae_gl_900y	n AEYN	AE	AEYN	Copy from source variable	COPY	AE	VISIT	Visit	C	60		
source.ae_gl_900y	n AEYN_STD			Not mapped	NOT MAPPED				-			-
source.ae_gl_900	PROJECT	AE	STUDYID	Recode according to STUDYID recoding list	RECODE [STUDYID]	AE	AECAT	Category	C	200		3
source.ae_gl_900	STUDYID			Not mapped	NOT MAPPED	AF		Mars any Advance Events Evention and 2	C	0		
source.ae_g1_900	SUBJECT	AE	SUBJID	Left justify and uppercase source variable	FUNCTION (SUBJID = STRIP(UPCASE(SUBJECT));)	AE	ALTIN	were any Adverse Events Experienced?	L	9		
source.ae_gi_900	INSTANCENIAME	AE	VISIT	Percede according to VISIT recoding list	PECODE (VISIT)	ΔF	AFTERM	What is the Adverse Event Term?	C	200		4
source ae gl 900	AFTERM		AFTERM	Copy from source variable	COPY		ALILIN	what is the Adverse Event ferm:	·	200		-
source.ae gl 900	AECAT	AE	AESPINT	Copy from source variable	СОРУ	AE	AESPINT	Is this an AE of Special Interest?	C	120		
source.ae_gl_900	AECAT_STD			Not mapped	NOT MAPPED				~			
source.ae_gl_900	AESEV	AE	AESEV	Copy from source variable	COPY	AE	AESEV	Severity	C	24		
source.ae_gl_900	AEREL	AE	AEREL	Copy from source variable	COPY	AE	AEDEL	Palationship to Study Treatment	C	22		
		AE		POSTSTEP1: COMBINE SOURCE DATASETS.	POSTSTEP1 [AL	AENEL	Relationship to study freatment	C	55		
				Combine the mapped source datasets	PROC sort DATA=work.mapped_source_ae_g1_900;							
				ae_gl_900yn and ae_gl_900 by merging on	BY studyid siteid subjid;							
				calculated values of STODYID, STIELD and	RUN;							
				30000	PPOC sort							
					DATA=work mapped source ae gl 900vo:							
					BY studyid siteid subiid:							
					RUN;							
					DATA work.mapped_combined_ae1;							
					MERGE work.mapped_source_ae_gl_900							
					work.mapped_source_ae_gl_900yn;							
					BY studyid siteid subjid;							
					RUN;]							

DRM Implementation Process

- Create DRM datasets for 13 trials
 - 1. According to trial specific source data:
 - Adjust standard mapping specifications
 - Adjust DRM metadata
 - 2. Create DRM datasets on a daily basis using the mapping framework

DRM Implementation Process

- Create DRM datasets for 13 trials
 - 1. According to trial specific source data:
 - Adjust standard mapping specifications
 - Adjust DRM metadata
 - 2. Create DRM datasets on a daily basis using the mapping framework
 - 3. Monitor daily DRM creations:
 - Data conversion failures could occur:
 - No source data available due to failure of automatic upload of source data
 - Source variables were added or removed
 - Values exceeded the length in the 'target' metadata and were truncated
 - Et cetera

Learnings & Next Steps

- Pilot phase demonstrated business value of the Data Review Model
 - Early access to data for medical review and central monitoring
 - Full data traceability and high data availability
- Planning for a staged roll-out of DRM
 - DM CROs will continue to deliver SDTM data packages in parallel

Learnings & Next Steps

- Based on feedback from the pilot teams:
 - Refining the DRM domain models and business rules
 - Moving enhanced mapping framework to production setting
 - Preparing for a library of mapping rules for Janssen's Data Capture standards to DRM

- Introduction of new utilities to enhance the DRM conversion process
 - Metadata driven setup of trial level mapping sheet
 - Fail-safe mechanism to check incoming source data

Johnson Johnson

Thank you! Questions?

Lieke Gijsbers OCS Life Sciences Netherlands Nele Claes Janssen R&D Belgium

