
CDISC CORE AND 'HOMEMADE CORE':
ENHANCING DATA CHECK OPERATIONS

June 28, 2023

2

AGENDA

CORE 3

RULES 21

Homemade CORE 29

CORE

4

CDISC CORE is a project that aims to deliver clear

and enforceable Conformance Rules for each

Foundational Standard. It provides an open-

source execution engine as a Reference

Implementation for these rules.

CORE - Introduction

5

CORE - Objectives

The CORE Project objectives are to:

> Ensure each standard has a set of unambiguous, executable Conformance Rules

> Ensure consistency across Conformance Rule implementations

> Expedite the availability of executable Conformance Rules for new Foundational Standards

> Create executable Conformance Rules vetted by the CDISC standards development teams

> Create a Reference Implementation of an open-source engine that executes the Rules

> Release the open-source engine under the CDISC Open-Source Alliance (COSA)

6

The following diagram illustrates the
concept of the CORE project,
including the Conformance Rules,
the executable form of the Rules,
and the Rules execution engine:

CORE - Project Concept Diagram

7

8

Functionality:

> Executes CORE Rules (YAML) against clinical data

and returns results

> Deployment agnostic

> Open-source, available in GitHub

Current focus:

> Process new YAML operators added to express

new rules

> Process new clinical data formats

> Support Define xml crosschecking

CORE – Engine

9

CORE – Is Open-Source

> Open-source framework

> Listed in the COSA (CDISC Open-Source Alliance)

directory

> Permissive MIT open-source license

> Provided via GitHub

> Free to all in CDISC community

> Very flexible implementation options

10

CORE – In Action

CMD
FORMEDIX

CORE
Pinnacle 21

11

• .\CORE

• VALIDATE

• -S SDTMIG

• -V 3-2

• -D .\XPT\

The CDISC Core Engine provides a command-line interface (CMD), which serves as an interface for users to interact with the software
and execute a wide range of operations

CORE – CMD

--HELP

12

CORE – CMD Results

Conformance Details

Issue Details

13

Formedix CORE is a free, downloadable Windows desktop application that provides an easy way to run validations on local data and
identify standards conformance issues.

CORE – FORMEDIX

RESULT

14

CORE – FORMEDIX Report Viewer

15

CORE – FORMEDIX RECAP

Features

> Load data from local XPT datasets

> Select subset of datasets to validate

> Select rule set

> Select subset of rules to run

> Refresh rule sets from CDISC Library

> Sorting/filtering of results

> View Excel results report

Benefits

> Early visibility of SDTM conformance

> Early visibility of safety and efficacy data

> Make informed decisions early on

> Run more trials, focus on those showing
promise

> Ultimately, speed the delivery of life
changing treatments

Future functionality

> Final production version of CORE engine

> Final production version of initial rulesets
(e.g. SDTM-IG 3.4)

> Additional rulesets (SEND, ADaM, FDA
business rules etc)

> Load data from CSV, Dataset-XML,
Dataset-JSON

> Validate against MedDRA / WHODrugand
other dictionaries

> (maybe) Linux / MacOS support

16

P21 supports CDISC Open Rules Engine (CORE), enabling execution of machine-readable CDISC Conformance Rules via desktop GUI or
CLI on any P21 Community platform.

CORE – PINNACLE 21

17

CORE – PINNACLE 21 Report

18

CORE – PINNACLE 21 RECAP

Experimental,
In-development Engine

> CORE has a limited Rule set and thus
cannot detect most data Issues. Expect
"false negatives," meaning, your datasets
will deceptively appear to have fewer Issues
than they actually do.

> More important, because no regulatory
agency uses the CORE Engine, you should
instead always use a valid production-grade
Engine (FDA, PMDA, etc.) for actual
submissions of real study data.

How to Run CORE Engine in P21
Community

> Via the desktop GUI, go to Validator, set
Engine to CDISC (0000.1) and choose a
Configuration, e.g., SDTM-IG 3.4 (CDISC),
which is the only one available from CDISC
at this time. Drop your files into the Source
Data box, and then Validate.

> Via the CLI.

YAML

20

YAML is a human-readable data serialization

language that is often used for writing

configuration files.

YAML is a popular programming language

because it is designed to be easy to read and

understand. It can also be used in conjunction

with other programming languages. Because of its

flexibility and accessibility.

YAML – What is it?

21

> YAML files use a .yml or .yaml extension and

follow a specific syntax rules.

> YAML has features that come from Perl, C, XML,

HTML, and other programming languages. YAML

is also a superset of JSON, so JSON files are valid

in YAML.

> There are no usual format symbols, such as

braces, square brackets, closing tags, or

quotation marks.

YAML – SYNTAX

RULES

23

RULES - INTRODUCTION

24

RULES – EXAMPLE: SDTM.CG0026.yml

25

RULES – EXAMPLE: CUSTOM RULE

I am a Note. My font is Open Sans, size is 11, colour 121F6B (Alira Health navy blue)

CONCLUSION

27

Why CORE?

OPEN
SOURCE

CUSTOM
EXTENSION

CUSTOM
RULES

MULTIPLE
SOFTWARE

28

How to Volunteer

https://www.cdisc.org/volunteer/form

> Select CORE Rules Team

> Expected Engagement

o Time Period: 3 - 6 months, or longer, if able

o Hours per week: 2 - 4 hours, in addition to meeting attendance

o Weekly Meetings and Workshops: Recorded and available for
review

o Rules Development Workshop Tuesdays 9am - 11am ET

o Weekly Team Meeting – Thursdays 11am - 12pm ET

https://www.cdisc.org/volunteer/form

Homemade CORE

30

Why?

> YAML Rule Handling: I wanted to understand how Python
handles YAML rules and parsing.

> CMD Environment: I aimed to create a command-line
environment that allows users to conveniently check and
validate their data.

> Practical Application: The example serves as a demonstration
of how Python can be used to apply YAML rules to a given
dataset.

> Information Sharing: Through this example, I aimed to provide
insights and knowledge to those interested in YAML parsing in
Python.

31

PACKAGES

> Pandas

> Yaml

> Template

> Argparse

32

PARSE COMMAND-LINE ARGUMENTS

> parser = argparse.ArgumentParser():
It creates an instance of the ArgumentParser class from the
argparse module. The ArgumentParser class provides a way to
specify the arguments that the program expects.

> parser.add_argument(‘name_parameter’,
help=‘Description_of_the_parameter’):
This line adds a positional argument named ‘name_parameter ' to
the argument parser. The help parameter is used to provide a
description of the argument for the user.

> args = parser.parse_args():
This line parses the command-line arguments provided by the user
and stores the values in the args variable.

33

IMPORT

34

DEF: CHECK_CONDITIONS

> Check_conditions takes two parameters:

o Conditions;

o Data.

> FOR loop that iterates over each condition in the conditions list.

> Inside the loop, the code extracts the values:

o Field;

o Operator;

o Value from each condition.

> If the operator is 'exists', it checks if the field exists in the data
dictionary. If the field is not present in the data dictionary, the
function returns False to indicate that the conditions are not met.

> If the operator is 'less_than_or_equal', it uses a templating
approach to evaluate the value. It renders the value by
substituting variables from the data dictionary using a template
engine. It then compares the rendered value with the
corresponding value in the data dictionary for the given field. If
the value in the data dictionary is greater than the rendered
value, the function returns False.

> If none of the conditions evaluated so far have returned False, the
function reaches the end of the loop and returns True, indicating
that all conditions have been met.

35

RULE01.YAML

> Name of the Rule: StartDateCannotBeGreaterThanEndDate

> Conditions: specify the requirements that need to be met for the
rule to be considered valid.

o It checks the existence of the "start_date" field.

o It checks the existence of the "end_date" field.

o It compares the value of the "start_date" field with the
"end_date" field using the "less_than_or_equal" operator.

> Operator: less_than_or_equal: This line indicates the comparison
operator used for the condition.

> value: "{{ end_date }}": It specifies the value to compare against. It
uses a template expression "{{ end_date }}" that will be rendered
dynamically during runtime.

> Message: Start date cannot be greater than end date.
It defines the error message associated with this rule.
If the conditions specified earlier are not met, this error message
will be triggered.

36

This code reads the contents of a YAML file named "rule.yaml" and loads it into a Python data structure using the yaml.safe_load()
function from the PyYAML library.

> With open('rule.yaml') as file: This line opens the file named
"rule.yaml" in the current directory using the open() function. It
assigns the file object to the variable file.

> Rules = yaml.safe_load(file): This line uses the yaml.safe_load()
function from the PyYAML library to parse the contents of the file.
It takes the opened file object file as the argument and returns a
Python data structure representing the YAML data. The parsed
data is assigned to the variable rules.

> Rules: it contains the Python data structure representing the YAML
data from the "rule.yaml" file.

OPEN YAML RULE

37

This process a dataset represented by a DataFrame “df” and applies a set of rules to filter out observations that do not meet the
conditions specified by the rules.

APPLY RULES

> The code iterates over each observation in df using a for loop.

> Satisfies_rule: It tracks whether the current observation satisfies
any of the rules.

> Nested loop: The second loop iterates over each rule in the rules
list.

> Check_conditions: it evaluates whether the current observation
satisfies the conditions specified by the current rule.

> If conditions satisfied for the current rule
then satisfies_rule = True and breaks out of the nested loop.

> After the nested loop, the code checks whether satisfies_rule is still
False. If it is, it means that the current observation did not satisfy
any of the rules. In this case, the observation is appended to the
new_dataset list using new_dataset.append(observation).

> New_dataset contain only those observations that did not satisfy
any of the rules.

38

EXPORT

> Convert list (df) to dataframe.

> Export as .csv

Example

39

EXAMPLE

Terminal

python main.py dataset.csv --output outputtest.csv

Output

40

CONCLUSION

PROs

> We are able to produce a data check report in every
stage of our study;

> It gives us the opportunity to create our own custom
rules;

> It doesn’t require an .xpt version of the dataset as per
Pinnacle 21 in order to produce data checks;

> Accessible through cmd;

> Open source.

CONs

> It requires YAML and PYTHON knowledge;

> Deep dive into the definition of the rules;

HQ

Thank You

NORTH
AMERICAN
OFFICES

Toronto | Canada

Boston | US

San Francisco | US

LET’S KEEP IN TOUCH

EUROPEAN
OFFICES

Vienna | Austria

Paris, Bordeaux | France

Munich | Germany

Bologna, Milan, Verona | Italy

Zevenbergen | Netherlands

Barcelona | Spain

Basel | Switzerland

London | UK

davide.marinucci@alirahealth.com
ASIAN PACIFIC
OFFICES

Sydney | Australia

Singapore

https://www.linkedin.com/company/alira-health
https://www.facebook.com/AliraHealth/
https://www.instagram.com/alirahealth/
https://twitter.com/AliraHealth

	Slide 1: CDISC CORE AND 'HOMEMADE CORE': ENHANCING DATA CHECK OPERATIONS
	Slide 2: AGENDA
	Slide 3: CORE
	Slide 4: CORE - Introduction
	Slide 5: CORE - Objectives
	Slide 6: CORE - Project Concept Diagram
	Slide 7
	Slide 8: CORE – Engine
	Slide 9: CORE – Is Open-Source
	Slide 10: CORE – In Action
	Slide 11: CORE – CMD
	Slide 12: CORE – CMD Results
	Slide 13: CORE – FORMEDIX
	Slide 14: CORE – FORMEDIX Report Viewer
	Slide 15: CORE – FORMEDIX RECAP
	Slide 16: CORE – PINNACLE 21
	Slide 17: CORE – PINNACLE 21 Report
	Slide 18: CORE – PINNACLE 21 RECAP
	Slide 19: YAML
	Slide 20: YAML – What is it?
	Slide 21: YAML – SYNTAX
	Slide 22: RULES
	Slide 23: RULES - INTRODUCTION
	Slide 24: RULES – EXAMPLE: SDTM.CG0026.yml
	Slide 25: RULES – EXAMPLE: CUSTOM RULE
	Slide 26: CONCLUSION
	Slide 27: Why CORE?
	Slide 28: How to Volunteer
	Slide 29: Homemade CORE
	Slide 30: Why?
	Slide 31: PACKAGES
	Slide 32: PARSE COMMAND-LINE ARGUMENTS
	Slide 33: IMPORT
	Slide 34: DEF: CHECK_CONDITIONS
	Slide 35: RULE01.YAML
	Slide 36: OPEN YAML RULE
	Slide 37: APPLY RULES
	Slide 38: EXPORT
	Slide 39: EXAMPLE
	Slide 40: CONCLUSION
	Slide 41

